
Martin Ziegler Issued on 2015-06-09
Holger Thies

Computational Complexity in Analysis
SoSe 2015, Exercise Sheet #8

For this exercise you will need to program in the C++ programming language using the iRRAM fra-
mework. You can download iRRAM from irram.uni-trier.de. The version on github is recommended
for this exercise, but the current release (2013 01) should also be fine.

If you do not want to install iRRAM on your local computer, you can use Secure Shell to get
remote access to a computer with a working iRRAM installation.

ssh irram@zieg.de
Password: TUDarmstadt

EXERCISE 13:
The logistic map is given by the recurrence relation

xn+1 = a · xn(1− xn) (1)

for some x0, a ∈ R.
For this exercise we assume x0 = 0.4 and a = 3.8.

a) Write a C++ program that computes xn for n ∈ {10,20,50,100,1000,10000}.
Use the data-type float for all variables holding real numbers.

b) Now rewrite your program from a) using double instead of float. Do the results differ? ∗

c) Write the same program using the iRRAM framework and the data-type REAL for real number
computations. Make sure that your output is correct at least up to error 2−30. How do the
results compare to part a) and b)?

d) Use iRRAM’s debug mode to find the number of iRRAM iterations and the internal precision
needed to compute xn for each of the n in part c).

EXERCISE 14:
In the lecture we have seen the trisection method to compute the zero of a computable function
f : [0,1]→ R such that f (0)< 0 and f (1)> 0 under the assumption that exactly one zero exists.

a) Write a function

REAL approx zero(const int p, const std::function<REAL(const REAL&)>&
f)

The function should give an approximation to a zero of f with error bounded by 2p if the
function f is of the above form.

∗Depending on your compiler there might in fact be no difference between the float and double data-types.

http://irram.uni-trier.de/


b) Now write a function REAL zero(REAL f(const REAL& f)) computing the zero of
f exactly by making use of iRRAM’s limit operators.

Using the limit operator on a function that has a function as input is a little tricky.

Instead of the limit seen in the lecture, the following function can be used

REAL limit (const FUNCTION<REAL,int> & f )

It works the same way as REAL limit(REAL f(int)) but the input is a FUNCTION ob-
ject. FUNCTION is a class defined by iRRAM, that can be constructed from an std::function
object g by using the function from algorithm(g).

Now, to use this limit operator you have to apply partial application to bind f to the second
parameter of the approx zero function, i.e., define a function REAL h(int p) such
that h(p) = approx zero(p,f).

c) Can you extend your program such that the function can have more than one zero?


