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Descriptive Complexity

Query
q1 q2 · · · qn

7→ Computation 7→ Answer
a1 a2 · · · ai · · · am

· · · S · · ·

Restrict attention to the complexity of computing individual bits
of the output, i.e., decision problems.

How hard is it to check if input has property S ?

How rich a language do we need to express property S?

There is a constructive isomorphism between these two
approaches.
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Think of the Input as a Finite Logical Structure

H = ({a,b, c},≤,EH ,RH ,GH ,BH)

≤H = {(a,a), (a,b), (a, c), (b,b), (b, c), (c, c)}

Colored

EH = {(a,b), (b,a), (b, c), (c,b), (c,a), (a, c)}

Graph

RH = {a}
GH = {b}
BH = {c}

H
a

bc
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First-Order Logic
input symbols: E ,R,Y ,B, . . .

variables: x , y , z, . . .
boolean connectives: ∧,∨,¬

quantifiers: ∀,∃
numeric symbols: =,≤,+,×,min,max

α ≡ ∀x∃y E(x , y)

β ≡ ∀xy (¬E(x , x) ∧ (E(x , y)→ E(y , x)))

γ ≡ ∀x ((∀y x ≤ y) → R(x))

In this setting, with the structure of interest being the finite
input, FO is a weak complexity class.

It is easy to test if input, H, satisfies α (H |= α).
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First-Order Logic

H a ≤ b ≤ c G 1 ≤ 2 ≤ 3

a

bc

3

12

H |= α ∧ β ∧ γ G |= α ∧ β ∧ ¬γ

α ≡ ∀x∃y E(x , y)

β ≡ ∀xy (¬E(x , x) ∧ (E(x , y)→ E(y , x)))

γ ≡ ∀x ((∀y x ≤ y) → R(x))

α and β are order independent; γ is order dependent
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Second-Order Logic: FO plus Relation Variables

Fagin’s Theorem: NP = SO∃

Φ3color ≡ ∃R1 G1 B1 ∀ x y ((R(x) ∨G(x) ∨ B(x)) ∧ (E(x , y)→
(¬(R(x) ∧ R(y)) ∧ ¬(G(x) ∧G(y)) ∧ ¬(B(x) ∧ B(y)))))

a

ds

b

c

g

t

f

e

a

s

b

c

g

d t

f

e
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r.e. completeco-r.e. complete

r.e.co-r.e.
Recursive

EXPTIME

PSPACE

PTIME Hierarchy SO NP complete
SAT

co-NP complete
SAT

SO∃ NPSO∀co-NP
NP ∩ co-NP

P complete
P

“truly

feasible”

FO(CFL)

FO(REGULAR)

FO
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Inductive Definitions and Least Fixed Point

E?(x , y)
def
= x = y ∨ E(x , y) ∨ ∃z(E?(x , z) ∧ E?(z, y))

ϕtc(R, x , y) ≡ x = y ∨ E(x , y) ∨ ∃z(R(x , z) ∧ R(z, y))

ϕG
tc : binRel(G) → binRel(G)

monotone R ⊆ S ⇒ ϕG
tc(R) ⊆ ϕG

tc(S)

G ∈ REACH ⇔ G |= (LFPϕtc)(s, t) E? = (LFPϕtc)

REACH =
{

G, s, t
∣∣ s ?→ t

}

REACH 6∈ FO

r r
r r

r
rr

r��
��*

HHHHj�
��
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HHj

H
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LFP is a Polynomial Iteration Operator

Thm. P = FO(LFP) = FO[nO(1)]

Graphs are completely general structures, i.e., any structure
can be encoded as a graph. Restrict to graphs.

FO[nO(1)] means for graphs with n vertices, the formula ϕn
expressing the property has nO(1) quantifiers, but only a fixed
number of requantified variables, x1, . . . , xk , i.e, ϕn ∈ Lk .

Above Thm requires ordering relation, ≤.

Necessary for encoding computation – inputs to computers are
ordered.

Unnatural for graphs – the ordering of the vertices is irrelevant.

Wanted: a language capturing Order-Independent P (OIP).
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Want to Capture Order-Indepdendent P (OIP)

FO(LFP) = P

FO(wo≤)(LFP) ⊆ OIP

EVEN def
=

{
G

∣∣ |V G| ≡ 0 (mod 2)
}

EVEN ∈ OIP− FO(wo≤)(LFP).

Thus, FO(wo≤)(LFP) ⊂
6= OIP

How do we prove EVEN 6∈ FO(wo≤)(LFP) ?
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Ehrenfeucht-Fraı̈ssé Game
Gk

m(G,H) m moves, k pebbles, 2 players

Samson: show a difference. Delilah: preserve isomorphism.
For all m, D wins G2

m(G,H); but S wins G3
3(G,H).

a

bf

c

d

e
G

g

h`

i

j

k
H

x1 x1

x2x2

x1x1

x3 x3

x3

Neil Immerman Towards Capturing Order-Independent P



Ehrenfeucht-Fraı̈ssé Game
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Gk

m(G,H) m moves, k pebbles, 2 players

Samson: show a difference. Delilah: preserve isomorphism.
For all m, D wins G2

m(G,H); but S wins G3
3(G,H).

a

bf

c

d

e
G

g

h`

i

j

k
H

x1 x1

x2x2

x1x1

x3

x3

x3

Neil Immerman Towards Capturing Order-Independent P



Fundamental Thm of Ehrenfeucht-Fraı̈ssé Games

Notation: G ∼k
m H means that Delilah has a winning

strategy for Gk
m(G,H).

Thm. D has a winning strategy on the m-move, k -pebble
game on G,H iff G and H agree on all formulas using k
variables and quantifier depth m.

G ∼k
m H ⇔ G ≡k

m H
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Thm. EVEN requires n + 1 variables without ordering.
Thus EVEN 6∈ FO(wo≤)(LFP).

proof:

g1

g2

...

g2m

G2m

h1

h2

...

h2m

h2m+1

H2m+1

x1 x1

x2x2

x2m x2m

G2m ∼2m H2m+1 �
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Add Counting to FO Logic

Two sorts: Numbers: {0,1, . . . ,n}, ≤, Plus, Times and
Vertices: {v1, . . . , vn}, E ,C1,C2 . . .

Combine with counting terms: #x(ϕ(x)).

EVEN ≡ ∃i (Plus(i , i ,#x(x = x)))

Let Ck def
= FOk (COUNT); FPC def

= FO(LFP,COUNT).

FO(wo≤)(LFP) ⊂
6= FPC ⊆ OIP
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Stable Coloring of Vertices

Start with a colored graph, and repeatedly color each vertex by
how many neighbors it has of each color.

a

bf

c

d

e

g

h`

i

j

k

a g

bf h`bf

a

ik

j

Thm. Stable Coloring of Vertices = C2 type.

Round m of stable coloring is quantifier depth of C2 formula.
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The Good News: Upper Bounds

Thm. [Babai, Erdos, Selkow] With high probability, after four
iterations of stable coloring, each vertex of a random graph has
a unique color, i.e., the C2

4 -type of each vertex is unique.

Thus, for almost all graphs, there is a linear time algorithm to
canonize the graph, i.e., sort the vertices by their C2 type, so
that two graphs are isomorphic iff their canonical forms are
equal.

With high probability, G ∼= H iff G ≡2
4 H.

Thus, Graph Isomorphism (GI) is linear time for random graphs.

In general the complexity of GI is unknown.

Thm. [Babai, 2015] GI ∈ DTIME[nlog7 n]. (Before this it was
only known that GI ∈ DTIME[n

√
n].)
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Logics Characterizing Graphs
Def. Language L characterizes a graph G iff for all graphs H,

G ≡L H ⇔ G ∼= H .

I C2 characterizes almost all random graphs.

I C2 characterizes all trees.

I C3 characterizes all graphs of color class size 3.

Thm. We can test if G ≡Ck H in FPC and DTIME[nk log n].

Cor. If Ck characterizes all graphs in a class of graphs G that is
closed under particularizing, then G admits Ck canonization,
and thus FPC captures OIP over G.

proof: Apply arbitrary FO(LFP) formula to the canonical form of
the input graph. �
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Particularizing Means Uniquely Coloring Some Vertex
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Is FPC Equal to OIP?

I Is FPC Equal to OIP?

I Does C4 characterize all graphs?

I If yes, then FPC = OIP and for all graphs,
G ∼= H ⇔ G ≡C4 H.

Thus, GI would be in DTIME[n4 log n].

Thm. [CFI] No!

A simple graph property (now called the CFI property)
checkable in DTIME[n], requires v = Ω(n) variables to express
in Cv . Thus, CFI ∈ OIP− FPC
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Proof of CFI Thm

CFI Gadget X : Each mi adjacent to an even number of aj ’s.
Automorphisms of X : switch an even number of (aibi) pairs.

a1 b1

m1 m2 m3 m4

b2a2 b3a3

a1 b1

m2 m1 m4 m3

a2b2 a3b3

Automorphism: (a2b2)(a3b3)(m1m2)(m3m4)

b1 a1

m4 m3 m2 m1

a2b2 b3a3

Automorphism: (a1b1)(a2b2)(m1m4)(m2m3)
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Automorphisms of X : switch an even number of (aibi) pairs.

a1 b1

m1 m2 m3 m4

b2a2 b3a3

a1 b1

m2 m1 m4 m3

a2b2 a3b3

Automorphism: (a2b2)(a3b3)(m1m2)(m3m4)

b1 a1

m4 m3 m2 m1

a2b2 b3a3

Automorphism: (a1b1)(a2b2)(m1m4)(m2m3)

Neil Immerman Towards Capturing Order-Independent P



Proof of CFI Thm
CFI Gadget X : Each mi adjacent to an even number of aj ’s.
Automorphisms of X : switch an even number of (aibi) pairs.

a1 b1

m1 m2 m3 m4

b2a2 b3a3

a1 b1

m2 m1 m4 m3

a2b2 a3b3

Automorphism: (a2b2)(a3b3)(m1m2)(m3m4)

b1 a1

m4 m3 m2 m1

a2b2 b3a3

Automorphism: (a1b1)(a2b2)(m1m4)(m2m3)

Neil Immerman Towards Capturing Order-Independent P



Gn

I Let Gn be a regular, degree 3 graph with O(n) vertices,
color class size 1 and separator size n.

I If we remove any n vertices from Gn, it still has a
connected component with more than |V Gn |/2 vertices.

I Such regular degree 3 graphs with linear-size separators
exist.

I Color class size 1 means every vertex of Gn has a unique
color.

I Let X (Gn) be the result of replacing each vertex v ∈ V Gn

by a copy of X of v ’s color.

I Thus X (Gn) has color class size 4.
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x

v

y z

Gn X (Gn)

X (Gn): replace each vertex v ∈ V Gn by a copy of X of v ’s color,
connecting a to a and b to b.
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x

v

y z

Gn X̃ (Gn)

X̃ (G) is X (G) with any one edge pair flipped.
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Is it X (Gn) or X̃ (Gn)?

Prop. Let X ′(Gn) be X (Gn) with some number, m, of the
magenta edges flipped.

Then X ′(Gn) ∼= X (Gn) iff m is even and

X ′(Gn) ∼= X̃ (Gn) iff m is odd.

proof: Using the automorphisms of X , we can move any two
flips towards each other until they eliminate each other.
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X̃ (Gn)
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a1 b1

m1 m2 m3 m4

b2a2 b3a3

X

Every one of the mi ’s is connected to an even number of aj ’s.
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a1 b1

m1 m2 m3 m4

b2a2 b3a3

X̃

Every one of the mi ’s is connected to an odd number of aj ’s.
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The CFI Problem

Def. CFI =
{

(X ′(G)
∣∣ X ′(G) ∼= X (G)

}
for G is connected,

reg. deg. 3, cc(G) = 1.

Prop. CFI ∈ DTIME[n].

proof Use the ordering to label boundary pairs ai ,bi when
ai ≤ bi . Then count the number, m, of flips of vertices and
edges mod 2. X ′(G) ∈ CFI iff m is even. �

.
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X̃ (Gn)
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Thm. CFI ∈ OIP− FPC.

proof We show that X (Gn) ≡Cn X̃ (Gn).

Counting doesn’t help since cc(X (Gn)) = 4. Suffices to show
that X (Gn) ∼n X̃ (Gn).

Initially no pebbles on the board, Samson places x1 on X (v) in
one of the two graphs. Note that the largest connected
component C1 of G − {v} includes over half the vertices of G.
Delilah moves the flip into C1. If she removes the flip, then the
two graphs are isomorphic. Delilah answers according to this
isomorphism.

Inductively, after step m, Delilah has not yet lost, so there is an
isomorphism from chosen points in X (Gn) to chosen points in
X̃ (Gn) which extends to an isomorphism of the whole graphs in
which a flip in G̃n in Cm has been removed.

Neil Immerman Towards Capturing Order-Independent P



Thm. CFI ∈ OIP− FPC.

proof We show that X (Gn) ≡Cn X̃ (Gn).

Counting doesn’t help since cc(X (Gn)) = 4. Suffices to show
that X (Gn) ∼n X̃ (Gn).

Initially no pebbles on the board, Samson places x1 on X (v) in
one of the two graphs. Note that the largest connected
component C1 of G − {v} includes over half the vertices of G.
Delilah moves the flip into C1. If she removes the flip, then the
two graphs are isomorphic. Delilah answers according to this
isomorphism.

Inductively, after step m, Delilah has not yet lost, so there is an
isomorphism from chosen points in X (Gn) to chosen points in
X̃ (Gn) which extends to an isomorphism of the whole graphs in
which a flip in G̃n in Cm has been removed.

Neil Immerman Towards Capturing Order-Independent P



Thm. CFI ∈ OIP− FPC.

proof We show that X (Gn) ≡Cn X̃ (Gn).

Counting doesn’t help since cc(X (Gn)) = 4. Suffices to show
that X (Gn) ∼n X̃ (Gn).

Initially no pebbles on the board, Samson places x1 on X (v) in
one of the two graphs. Note that the largest connected
component C1 of G − {v} includes over half the vertices of G.
Delilah moves the flip into C1. If she removes the flip, then the
two graphs are isomorphic. Delilah answers according to this
isomorphism.

Inductively, after step m, Delilah has not yet lost, so there is an
isomorphism from chosen points in X (Gn) to chosen points in
X̃ (Gn) which extends to an isomorphism of the whole graphs in
which a flip in G̃n in Cm has been removed.

Neil Immerman Towards Capturing Order-Independent P



Thm. CFI ∈ OIP− FPC.

proof We show that X (Gn) ≡Cn X̃ (Gn).

Counting doesn’t help since cc(X (Gn)) = 4. Suffices to show
that X (Gn) ∼n X̃ (Gn).

Initially no pebbles on the board, Samson places x1 on X (v) in
one of the two graphs. Note that the largest connected
component C1 of G − {v} includes over half the vertices of G.
Delilah moves the flip into C1. If she removes the flip, then the
two graphs are isomorphic. Delilah answers according to this
isomorphism.

Inductively, after step m, Delilah has not yet lost, so there is an
isomorphism from chosen points in X (Gn) to chosen points in
X̃ (Gn) which extends to an isomorphism of the whole graphs in
which a flip in G̃n in Cm has been removed.

Neil Immerman Towards Capturing Order-Independent P



Thm. CFI ∈ OIP− FPC.

proof We show that X (Gn) ≡Cn X̃ (Gn).

Counting doesn’t help since cc(X (Gn)) = 4. Suffices to show
that X (Gn) ∼n X̃ (Gn).

Initially no pebbles on the board, Samson places x1 on X (v) in
one of the two graphs. Note that the largest connected
component C1 of G − {v} includes over half the vertices of G.
Delilah moves the flip into C1. If she removes the flip, then the
two graphs are isomorphic. Delilah answers according to this
isomorphism.

Inductively, after step m, Delilah has not yet lost, so there is an
isomorphism from chosen points in X (Gn) to chosen points in
X̃ (Gn) which extends to an isomorphism of the whole graphs in
which a flip in G̃n in Cm has been removed.

Neil Immerman Towards Capturing Order-Independent P



Inductively, after step m, Delilah has not yet lost, so there is an
isomorphism from chosen points in X (Gn) to chosen points in
X̃ (Gn) which extends to an isomorphism of the whole graphs in
which a flip in G̃n in Cm has been removed.

Samson picks up the xi pebbles and places one on some X (v).
Note that Cm and Cm+1 both contain over half the vertices of
Gn.

Thus they have some vertex w ∈ Cm ∩ Cm+1.

Delilah mentally moves the flip to X (w). She then answers
according to the isomorphism from X (Gn) to X̃ (Gn) where that
flip in X (w) has been removed.

Thus Delilah never loses. �

Neil Immerman Towards Capturing Order-Independent P



Inductively, after step m, Delilah has not yet lost, so there is an
isomorphism from chosen points in X (Gn) to chosen points in
X̃ (Gn) which extends to an isomorphism of the whole graphs in
which a flip in G̃n in Cm has been removed.

Samson picks up the xi pebbles and places one on some X (v).
Note that Cm and Cm+1 both contain over half the vertices of
Gn.

Thus they have some vertex w ∈ Cm ∩ Cm+1.

Delilah mentally moves the flip to X (w). She then answers
according to the isomorphism from X (Gn) to X̃ (Gn) where that
flip in X (w) has been removed.

Thus Delilah never loses. �

Neil Immerman Towards Capturing Order-Independent P



Inductively, after step m, Delilah has not yet lost, so there is an
isomorphism from chosen points in X (Gn) to chosen points in
X̃ (Gn) which extends to an isomorphism of the whole graphs in
which a flip in G̃n in Cm has been removed.

Samson picks up the xi pebbles and places one on some X (v).
Note that Cm and Cm+1 both contain over half the vertices of
Gn.

Thus they have some vertex w ∈ Cm ∩ Cm+1.

Delilah mentally moves the flip to X (w). She then answers
according to the isomorphism from X (Gn) to X̃ (Gn) where that
flip in X (w) has been removed.

Thus Delilah never loses. �

Neil Immerman Towards Capturing Order-Independent P



Inductively, after step m, Delilah has not yet lost, so there is an
isomorphism from chosen points in X (Gn) to chosen points in
X̃ (Gn) which extends to an isomorphism of the whole graphs in
which a flip in G̃n in Cm has been removed.

Samson picks up the xi pebbles and places one on some X (v).
Note that Cm and Cm+1 both contain over half the vertices of
Gn.

Thus they have some vertex w ∈ Cm ∩ Cm+1.

Delilah mentally moves the flip to X (w). She then answers
according to the isomorphism from X (Gn) to X̃ (Gn) where that
flip in X (w) has been removed.

Thus Delilah never loses. �

Neil Immerman Towards Capturing Order-Independent P



Recap

We have shown that the linear-time CFI problem is in
OIP− FPC.

Cor. Ω(n) variables are needed to characterize graphs.
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Recent Developments: FPC is Surprisingly Powerful

Martin Grohe has shown that many classes of graphs are
characterized by Ck for some k . This includes planer graphs,
graphs of bounded genus, graphs of bounded tree width and
culminating in

Thm. [Grohe] Any class G of graphs that excludes some
minor is characterized by Ck for some fixed k .
Thus,

I FPC captures OIP on G. Thus, for graphs from G, graph
isomorphism and canonization are in P.

I For G,H ∈ G, G ∼= H iff G ≡Ck H.

Thm. [Anderson, Dawar and Holm] Linear Programming is in
FPC.
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Going Beyond FPC

Two other languages are candidates for capturing OIP:

I Choiceless Polynomial Time (CPT) [Blass and Gurevich]
Compute using sets of sets of sets, etc., where instead of
choosing the first vertex, we consider the set of all such
choices, keeping the total size of all sets polynomial.

I Rank Logic [Dawar, Grohe, Holm, and Laubner] Compute
the rank of matrices expressed in an unordered setting.

CFI is expresible in CPT and in Rank Logic, thus these are
strict extenstions of FPC.

What I want: more natural extension to FPC that adds group
theory and characterizes graphs using O(log n) variables.
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