Algorithmic Foundations of Numerics

Schedule: Tue.+Thu. 14h30—15h45 in E3 #3445

Instructor: Martin Ziegler, TA: 박지원

Language: English Prereq.s: Analysis + TCS

Attendance: 10 points for missing <5 lectures, 9 when missing 5, 8 when missing 6, and so on.

Grading: Homework 15%, Presentation 15%, Midterm 30%, Final exam 30%, Attendance 10%

Homework: Assigned roughly every 2nd week, 7 days to solve, individual solutions by email

Literature, slides, assignments etc: http://theoryofcomputation.asia/16CS700/

Exams: Midterm Oct 20, Final Dec 15, 1pm-3pm

Overview

- 1.<u>Recap on discrete</u> <u>Theory of Computation:</u>
 - * computability theory
 - * asymptotic runtime/memory
 - * machine models
 - * P, NP₁, NP, #P, PSPACE, EXP
 - * reduction, completeness
 - * parameterized complexity
- 2. Real Computability Theory:
 - * numbers, sequences, limits
 - * uncomputable equality test
 - * computability vs. continuity
 - * arithmetic and operators
 - * uncomputable Wave equation
 - * enrichment, analytic functions
 - * multivaluedness, linear algebra

- 3. Computability on Metric Spaces
 - * C[0;1] and Weierstrass
 - * compact Euclidean subsets
 - * representations and TTE
 - * Kreitz/Weihrauch "Main Thm"
 - * Henkin-continuity
 - * Weihrauch reduction
- 4. Complexity Theory over Reals
 - * complexity and continuity
 - * maximizing polytime functions
 - * integration and solving ODEs
 - * solving Poisson's PDE
 - * parametrized analytic functions
- 5. Imperative Real Programming
- 6. Complexity on Metric Spaces

CS700 M. Ziegler

Background Check

KAIST

- Convergent sequence
- Continuous function
- Compact subset
- Metric space
- Logic?

- Halting Problem
- Models of Computation
- Oracle machine
- \mathcal{NP} , reduction
- Approx. algorithm

- C++
- Unix/Linux

Theoretical Computer Science and Mathematics CS700 M. Ziegler

"Virtues":

- problem specification
- formal semantics
- algorithm design
- and analysis (correctness, efficiency)
- optimality proof

Reliability in Numerical Software?

Peter Linz (Courant Institute), p.412, Bull. AMS vol.19:2 «Over the years, I have sat on many Ph.D. qualifying examinations or dissertation defenses for engineering students whose work involved a significant amount of numerical computing. In one form or another, I invariably ask [...]: "How do you know that your answers are as accurate as you claim?" [...]

After an initial blank or hostile stare, I usually get an answer like "I tested the method with some simple examples and it worked", "I repeated the computation with

several values of *n* and the results agreed to three decimal places", *or more lamely*, "the answers looked like what I expected".

Debunking Numerical Myths

Must not test for equality "=" How about inequality "<"?

 $x=0 \iff \neg(x<0) \land \neg(x>0)$ Jockusch \rightarrow multivalued semantics &Soare[\]72

<u>computable</u> point [Pour-El&Richards'89] There is a computable initial condition fs.t. solution u(1) is not computable (contains encoding of Halting problem)

KAIST

CS700 M. Ziegler

[Specker'59] There

is a computable

 $C^{\infty} f:[0;1] \rightarrow [0;1]$

minimum in no

attaining its

Weihrauch&Zhong: "Is Wave Propagation Computable or Can Wave Computers Beat the Turing Machine?", Proc. London Math. Soc.'02

Iterating the Logistic Map

