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Problem 1 (3+Problem 1 (3+Problem 1 (3+Problem 1 (3+2+22+22+22+2++++3333 points): points): points): points):  

a) Give an example of a continuous but incomputable function f:[0;1]→�. 

b) Specify a decidable (discrete) L that cannot be decided in polynomial time unless P=NP. 

c) Give an example of an computable function h:[0;1]→�  

   that cannot be computed in polynomial time. 

d) Justify your answer in c). 

 

Recall that a modulus of continuity  µ:�→�  of  f:[0;1]→�  by definition satisfies 

   |x-x'|≤2-µ(n)   ⇒       |f(x)-f(x')|≤2-n     and  L-Lipschitz means  |f(x)-f(x')| ≤ L·|x-x'| 

Problem 2Problem 2Problem 2Problem 2 (3+ (3+ (3+ (3+2222++++2222++++3333 points): points): points): points):  

a) Let f:[0;1]→[0;1] have modulus of continuity µ and g:[0;1]→[0;1] have modulus ν. 

   Prove that their composition g◦f has modulus µ◦ν. 

b) For L-Lipschitz f:[0;1]→[0;1] and K-Lipschitz g:[0;1]→[0;1], g◦f is L·K-Lipschitz. 

c) For L=2=K give an example showing that b) is optimal! 

d) Prove that the function h:[0;1]∋x→1/ln(e/x)∈[0;1] is well-defined and continuous 

   but does not admit a polynomial modulus of continuity. 

Problem 3 (5+5Problem 3 (5+5Problem 3 (5+5Problem 3 (5+5 points): points): points): points):  

a) Prove (without recurring to results from the lecture) that there exist (not necessarily  

   computable) sequences (an),(bn)⊆� such that  �c⊆n (an,bn)  and  ∑n |bn-an| ≤ ½. 

b) Describe, establish correctness, and analyze the runtime of an algorithm computing the  

  minimum of an arbitrary but fixed polynomial-time computable 1-Lipschitz f:[0;1]→[0;1]. 

Problem 4 (0Problem 4 (0Problem 4 (0Problem 4 (0 points): points): points): points): Remember that 

a) there is a computable increasing bounded rational sequence with incomputable limit; 

b) there is a computable smooth  f:[0;1]→� attaining its minimum in no computable point; 

c) there is a computable continuously differentiable f:[0;1]→� with incomputable derivative. 

d) Every real function computable in time t(n) has modulus of continuity t(n+1)+1; 

e) every computable f:[0;1]→� is computable in some time bound t(n) depending only 

  on the output precision n; and has computable maximum and computable integral. 
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