

CS700

291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea Tel. +82-42-350-3502~3507 Fax. +82-42-350-3510

Prof. Dr. Martin Ziegler + 82-42-350-3568 ziegler@kaist.ac.kr http://m.zie.de

Oct.20, 2016

# Midterm Exam

Please write your name and student ID here \_\_\_\_\_

as well as on each additional sheet of paper you use!

50 points = 125%

### Problem 1 (3+3+4 points):

a) Let  $A \subseteq \mathbb{N}$  be decidable and  $\emptyset \subset B \subseteq \mathbb{N}$  arbitrary. Prove  $A \preceq B$ .

b) Prove  $H \preceq T$ , where H denotes the Halting Problem and T the Totality Problem:

 $H = \{ \langle \mathcal{A}, x \rangle : \mathcal{A} \text{ terminates on input } x \}, \quad T = \{ \langle \mathcal{A} \rangle : \mathcal{A} \text{ terminates on all inputs } \}$ c) Prove  $T \not\preceq \overline{H}$ .

Recall that a real number r is <u>computable</u> iff some (equivalently: all) of the following hold:

- a) r has a decidable binary expansion
- b) There exists a computable integer sequence  $(a_m)$  s.t.  $\forall m: |r-a_m/2^m| \le 2^{-m}$ .
- c) There exist computable sequences  $(q_n)$  and  $(\varepsilon_n)$  of

(numerators and denominators of) rational numbers such that  $|r-q_n| \leq \varepsilon_n \rightarrow 0$ .

### Problem 2 (3+4+3 points):

a) Give an example of a real number r which is *not* computable.

b) Conclude that this number is transcendental.

c) Prove that every non-empty open interval contains a computable real.

## Problem 3 (3+4+3 points):

a) Let a, b be computable real numbers. Prove that a+b is computable.

b) Let a, b be computable real numbers. Prove that  $a \cdot b$  is computable.

c) Let  $(a_j)$ ,  $(b_j)$  be computable sequences. Prove that  $(a_j+b_j)$  is computable.

Recall that a real sequence  $(r_j)$  is called <u>computable</u>

iff there exists a computable integer double sequence  $a_{j,m}$  such that  $\forall m, j: |r_j - a_{j,m}/2^m| \le 2^{-m}$ .



Recall that a real function  $f:[0;1] \to \mathbb{R}$  is <u>computable</u> iff some Turing machine can convert any integer sequence  $a_m$  satisfying  $|x - a_m| \le 2^{-m}$  for some x, into an integer sequence  $b_n$  s.t.  $|f(x)-b_n| \le 2^{-n}$ ; equivalently: there exists a computable sequence of (degrees and coefficient lists of) integer polynomials  $p_m$  such that  $||f-p_m||_{\infty} \le 2^{-m}$ .

#### Problem 4 (3+4+3 points):

- a) Let  $(r_j) \subseteq [0;1]$  denote a computable sequence of real numbers and  $f:[0;1] \rightarrow \mathbb{R}$  a computable real function. Prove that  $(f(r_j))$  constitutes again a computable real sequence.
- b) Let  $(r_j)$  denote a computable sequence of real numbers such that  $|r_j r_k| \le 2^{-j} + 2^{-k}$ . Prove that  $r:=\lim_j r_j$  exists and is a computable real number.
- c) Give an example of a computable real sequence  $(r_j)$  in [0;1] which does *not* have a computable accumulation point.

**Problem 5 (10 points):** Let  $(r_j)$  denote an arbitrary computable sequence of real numbers. Without proofs, check  $(\sqrt{})$  which of the following sets are

| AX                     | $\{ j \in \mathbb{N} : r_j = 0 \}$ | $\{ j \in \mathbb{N} : r_j \neq 0 \}$ | $\{ j \in \mathbb{N} : r_j > 0 \}$ | $\{ j \in \mathbb{N} : r_j \ge 0 \}$ |
|------------------------|------------------------------------|---------------------------------------|------------------------------------|--------------------------------------|
| decidable              |                                    | 1071                                  | 24                                 |                                      |
| semi-decidable         | 6                                  | 19/1                                  |                                    |                                      |
| co-semi-decidable      | 1                                  |                                       |                                    |                                      |
| recursively enumerable | E 10                               | 川村川省                                  | 2                                  |                                      |